Functional exploration of the IFT-A complex in intraflagellar transport and ciliogenesis
نویسندگان
چکیده
Intraflagellar transport (IFT) particles or trains are composed of IFT-A and IFT-B complexes. To assess the working mechanism of the IFT-A complex in IFT and ciliogenesis, we have analyzed ift43 mutants of Chlamydomnonas in conjunction with mutants of the other IFT-A subunits. An ift43 null mutant or a mutant with a partial deletion of the IFT43 conserved domain has no or short flagella. The mutants accumulate not only IFT-B but also IFT-Ain the short flagella, which is in contrast to an ift140 null mutant. The IFT43 conserved domain is necessary and sufficient for the function of IFT43. IFT43 directly interacts with IFT121 and loss of IFT43 results in instability of IFT-A. A construct with a partial deletion of the IFT43 conserved domain is sufficient to rescue the instability phenotype of IFT-A, but results in diminishing of IFT-A at the peri-basal body region. We have further provided evidence for the direct interactions within the IFT-A complex and shown that the integrity of IFT-A is important for its stability and cellular localization. Finally, we show that both IFT43 and IFT140 are involved in mobilizing ciliary precursors from the cytoplasmic pool during flagellar regeneration, suggesting a novel role of IFT-A in transporting ciliary components in the cytoplasm to the peri-basal body region.
منابع مشابه
Sensory ciliogenesis in Caenorhabditis elegans: assignment of IFT components into distinct modules based on transport and phenotypic profiles.
Sensory cilium biogenesis within Caenorhabditis elegans neurons depends on the kinesin-2-dependent intraflagellar transport (IFT) of ciliary precursors associated with IFT particles to the axoneme tip. Here we analyzed the molecular organization of the IFT machinery by comparing the in vivo transport and phenotypic profiles of multiple proteins involved in IFT and ciliogenesis. Based on their m...
متن کاملSensory Ciliogenesis in C. elegans: Assignment of IFT components into Distinct Modules Based on Transport and Phenotypic Profiles
Sensory cilium biogenesis within C. elegans neurons depends upon the kinesin-2-dependent intraflagellar transport (IFT) of ciliary precursors associated with IFT particles to the axoneme tip. Here we analyzed the molecular organization of the IFT machinery by comparing the in vivo transport and phenotypic profiles of multiple proteins involved in IFT and ciliogenesis. Based on their motility in...
متن کاملCrystal structures of IFT70/52 and IFT52/46 provide insight into intraflagellar transport B core complex assembly
Cilia are microtubule-based organelles that assemble via intraflagellar transport (IFT) and function as signaling hubs on eukaryotic cells. IFT relies on molecular motors and IFT complexes that mediate the contacts with ciliary cargo. To elucidate the architecture of the IFT-B complex, we reconstituted and purified the nonameric IFT-B core from Chlamydomonas reinhardtii and determined the cryst...
متن کاملIntraflagellar transport proteins in ciliogenesis of photoreceptor cells.
BACKGROUND INFORMATION The assembly and maintenance of cilia depend on IFT (intraflagellar transport) mediated by molecular motors and their interplay with IFT proteins. Here, we have analysed the involvement of IFT proteins in the ciliogenesis of mammalian photoreceptor cilia. RESULTS Electron microscopy revealed that ciliogenesis in mouse photoreceptor cells follows an intracellular cilioge...
متن کاملChlamydomonas IFT70/CrDYF-1 Is a Core Component of IFT Particle Complex B and Is Required for Flagellar Assembly
DYF-1 is a highly conserved protein essential for ciliogenesis in several model organisms. In Caenorhabditis elegans, DYF-1 serves as an essential activator for an anterograde motor OSM-3 of intraflagellar transport (IFT), the ciliogenesis-required motility that mediates the transport of flagellar precursors and removal of turnover products. In zebrafish and Tetrahymena DYF-1 influences the cil...
متن کامل